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Abstract
Learning detectors that can recognize concepts,
such as people actions, objects, etc., in video con-
tent is an interesting but challenging problem. In
this paper, we study the problem of automatically
learning detectors from the big video data on the
web without any additional manual annotations.
The contextual information available on the web
provides noisy labels to the video content. To
leverage the noisy web labels, we propose a novel
method called WEbly-Labeled Learning (WELL).
It is established on two theories called curricu-
lum learning and self-paced learning and exhibits
useful properties that can be theoretically verified.
We provide compelling insights on the latent non-
convex robust loss that is being minimized on the
noisy data. In addition, we propose two novel tech-
niques that not only enable WELL to be applied to
big data but also lead to more accurate results. The
efficacy and the scalability of WELL have been ex-
tensively demonstrated on two public benchmarks,
including the largest multimedia dataset and the
largest manually-labeled video set. Experimen-
tal results show that WELL significantly outper-
forms the state-of-the-art methods. To the best of
our knowledge, WELL achieves by far the best re-
ported performance on these two webly-labeled big
video datasets.

1 Introduction
The Internet has been witnessing an explosion of video data.
Due to the huge volume of the data, automatic video under-
standing has received increasing attentions in both the artifi-
cial intelligence and the machine learning community. Gen-
erally, researchers are interested in training a large number
of detectors that can automatically recognize concepts occur-
ring in the video content, such as people, objects, actions,
etc. These concept detectors are important building blocks
for many applications such as video search, summarization
and question answering [Jiang et al., 2015b].

Training concept detectors on videos is more challenging
than on still images. Manually labeling video requires play-
ing back the video, which is more time consuming and ex-
pensive than labeling still images. As a result, the largest

labeled video collection, called FCVID [Jiang et al., 2015d],
only contains about 0.09 million labels, much less than the
14 million labels in the image collection ImageNet [Deng et
al., 2009]. Furthermore, since videos are more complex than
images, training robust video detectors require more labeled
data. However, paradoxically, we have significantly less la-
bels for videos than images where we should have more.

In fact, there exists considerable amount of videos on the
web that contain rich contextual information with a weak an-
notation about the video content, such as the video title, de-
scription or the social network of the uploader. We call these
videos webly-labeled. The webly-labeled videos can be col-
lected without any manual effort, and its amount is orders
of magnitude larger than that of any manually-labeled video
collection. Unlike the manual labels, the web labels are noisy
and have both low accuracy and low recall: the webly-labeled
concepts may not present in the video content and concepts
not in the web label may appear in the video.

Few studies have been proposed to leverage the noisy
webly-labeled data in training concept detectors. Most of
them are in the image domain [Fergus et al., 2005; Li and
Fei-Fei, 2010; Bergamo and Torresani, 2010]. For example,
[Divvala et al., 2014] proposed a semi-supervised learning
method to extract concept variations and train image varia-
tion models based on downloaded images using text-based
search. [Mitchell et al., 2015] proposed a Never-Ending
Language Learner that makes use of the Internet and learns
knowledge and beliefs 24/7. A study by Google introduced
an efficient large-scale video classification [Varadarajan et al.,
2015], where they utilized YouTube videos with weak web la-
bels. These existing studies demonstrated promising results
in this direction. However, existing methods are mainly built
on heuristic approaches, and it is unclear, for example, what
objective is being optimized; where or even whether the pro-
cess converges. The lack of understanding of these questions
hinders not only the theoretical analysis but also the practical
advances of existing methods.

An ideal webly-labeled learning method would not only
utilize heuristic but also, importantly, prove to be theoreti-
cally sound. To this end, this paper proposes a novel method
called WEbly-Labeled Learning (WELL). It is established on
the theories called curriculum learning [Bengio et al., 2009]
and self-paced learning [Kumar et al., 2010]. The learn-
ing theory is inspired by the underlying cognitive processes



of humans and animals, which generally start with learn-
ing easier aspects of a task, and then gradually take more
complex examples into consideration [Kumar et al., 2010;
Bengio et al., 2009; Jiang et al., 2015a]. Following their idea,
WELL learns a concept detector iteratively from first using
a few samples with more confident labels, then incorporates
more samples with noisy labels. The algorithm combines the
prior knowledge extracted from the webly-labeled data with
the dynamic information learned from the statistical model to
determine the label confidence in the next iteration.

WELL is a novel framework for training concept detec-
tors from webly-labeled data. It is a also general framework
that can incorporate state-of-the-art deep learning methods to
learn robust detectors from noisy data that can also be ap-
plied to image domain. In summary, the contribution of this
paper is threefold. First, it proposes a novel webly-labeled
learning method with solid theoretical justifications. Second,
it advances the state-of-the-art curriculum and self-paced the-
ory by introducing two novel techniques, namely, the partial-
order curriculum and dropout. The proposed techniques not
only enable WELL to be applied to big data, but also lead to
more accurate results. Finally, the efficacy and the scalabil-
ity have been empirically demonstrated on two public bench-
marks, including by far the largest manually-labeled video
set called FCVID [Jiang et al., 2015d] and the largest mul-
timedia dataset called YFCC100M [Thomee et al., 2015].
Experimental results show that WELL outperforms state-of-
the-art methods with statistically significant differences. The
promising results suggest that detectors trained on sufficient
webly-labeled videos may outperform detectors trained on
any existing manually-labeled sets.

2 Related Work
Curriculum and Self-paced Learning: Recently, Bengio et
al. proposed a learning paradigm called curriculum learning
(CL), in which a model is learned by gradually incorporating
from easy to complex samples in training so as to increase the
entropy of training samples [Bengio et al., 2009]. A curricu-
lum determines a sequence of training samples and is often
derived by predetermined heuristics in particular problems.
For example, [Chen and Gupta, 2015] designed a curricu-
lum where images with clean backgrounds are ranked be-
fore the images with noisy backgrounds, i.e. their method
first builds a feature representation by a Convolutional Neu-
ral Network (CNN) on images with clean background and
then fine tunes the models on images with noisy background.
In [Spitkovsky et al., 2009], the authors approached gram-
mar induction, where the curriculum is derived in terms of
the length of a sentence. Because the number of possible so-
lutions grows exponentially with the length of the sentence,
and short sentences are easier and thus should be learn earlier.

The heuristic knowledge in a problem often proves to be
useful. However, the curriculum design may lead to incon-
sistency between the fixed curriculum and the dynamically
learned models. That is, the curriculum is predetermined
prior knowledge and cannot be adjusted accordingly, taking
into account the feedback about the learner. To alleviate the
issue of CL, [Kumar et al., 2010] designed a new paradigm,
called self-paced learning (SPL). SPL embeds curriculum de-

sign as a regularizer into the learning objective. Compared
with CL, SPL exhibits two advantages: first, it jointly op-
timizes the learning objective with the curriculum, and thus
the curriculum and the learned model are consistent under the
same optimization problem; second, the learning is controlled
by a regularizer which is independent of the loss function in
specific problems. This theory has been successfully applied
to various applications, such as matrix factorization [Zhao et
al., 2015], action/event detection [Jiang et al., 2014b], do-
main adaption [Tang et al., 2012], tracking [Supancic and Ra-
manan, 2013] and segmentation [Kumar et al., 2011], rerank-
ing [Jiang et al., 2014a], etc.

Learning Detector in Web Data: Recently, a few stud-
ies have been proposed trying to utilize the huge amount of
noisy data from the Internet. For example, [Mitchell et al.,
2015] proposed a Never-Ending Language Learning (NELL)
paradigm and built adaptive learners that makes use of the
web data by learning different types of knowledge and be-
liefs continuously. Such learning process is mostly self-
supervised, and previously learned knowledge enables learn-
ing further types of knowledge. [Sukhbaatar et al., 2014]
designed loss layers specifically for noisy label learning of
images in Convolutional Neural Network. It tried to esti-
mate the distribution of noise and was mainly verified on
synthesized noisy labels. [Liang et al., 2015] presented a
weakly-supervised method called Baby Learning for object
detection from a few training images and videos. They first
embed the prior knowledge into a pre-trained CNN. When
given very few samples for a new concept, a simple detector
is constructed to discover much more training instances from
the online weakly labeled videos. As more training samples
are selected, the concept detector keeps refining until a ma-
ture detector is formed. [Varadarajan et al., 2015] discussed
a method that exploits the YouTube topic API to train large
scale video concept detectors on YouTube. The method uti-
lized a calibration process and hard negative mining to train
a second order mixture of experts model in order to discover
correlations within the labels. Existing methods are mainly
built on heuristic approaches and it is unclear what objec-
tive is being optimized. In this paper, we theoretically justify
the proposed method and empirically demonstrate its superior
performance over representative existing methods.

3 WEbly-Labeled Learning (WELL)
3.1 Model and Algorithm
In this paper, we consider a concept detector as a binary clas-
sifier. The noisy web labels for a concept can be automat-
ically collected by matching the concept name to the latent
topic of video metadata. For example, a video may have a
web label “dog” as its title talks about dog. [Varadarajan
et al., 2015] utilizes the YouTube topic API, which is de-
rived from the textual metadata, to automatically get noisy
labels for videos. The web labels are quite noisy as the
webly-labeled concepts may not present in the video content
whereas the concepts not in the web label may well appear.

To leverage the noisy web labels in a principled way, we
propose WEbly-Labeled Learning (WELL). Formally, given
a training set D = {(xi, yi)}ni=1, where xi ∈ Rm denotes the
feature for the ith observed sample, and yi represents its noisy



web label. Let L(yi, g(xi,w)), or `i for short, denote the loss
function which calculates the cost between the noisy label
yi and the estimated label g(xi,w). Here w represents the
model parameter inside the decision function g. For exam-
ple, in our paper, w represents the weight parameters in the
Convolutional Neural Network (CNN). Our goal is to jointly
learn the model parameter w and the latent weight variable
v = [v1, · · · , vn]T by:

min
w,v∈[0,1]n

E(w,v;λ,Ψ)=

n∑
i=1

viL(yi,g(xi,w))+f(v;λ),

subject to v ∈ Ψ

(1)

where v = [v1, v2, · · · , vn]
T denote the latent weight vari-

ables reflecting the labels’ confidence. The weights deter-
mine a learning sequence of samples, where samples with
greater weights tend to learned earlier. Our goal is to assign
greater weights to the sample with confident labels whereas
smaller or zero weights to the samples with noisy labels. To
this end, we employ the self-paced regularizer f , which con-
trols the learning scheme. We consider the binary regularizer
Eq. (2) proposed in [Kumar et al., 2010] and the linear regu-
larizer Eq. (3) proposed in [Jiang et al., 2015a]:

fb(v;λ) = −λ‖v‖1, (2)

fl(v;λ) =
1

2
λ

n∑
i=1

(v2i − 2vi). (3)

Generally, a self-paced regularizer determines the scheme for
penalizing the latent weight variables. Physically it resem-
bles the learning schemes human used in understanding new
concepts. The linear scheme corresponds to a prudent strat-
egy, which linearly penalizes the samples that are different
to what the model has already learned (see Eq. (4)); whereas
the binary scheme is more aggressive and only assigns binary
weights. The hyper-parameter λ (λ > 0) is called “model
age”, which controls the pace at which the model learns new
samples. When λ is small only samples of with small loss
will be considered. As λ grows, more samples with larger
loss will be gradually appended to train a “mature” mode.

Ψ in Eq. (1) is a curriculum region that incorporates the
prior knowledge extracted from the webly-labeled data as a
convex feasible region for the weight variables. The shape
of the region weakly implies a prior learning sequence of
samples, where the expected values for favored samples are
larger. The curriculum region can be derived in a variety of
ways. Section 7 will discuss this topic in details. A straight-
forward approach is by counting the term frequency in the
video metadata. That is, for example, the chance of a video
containing the concept “zebra” become higher when it has
more word “zebra” in its title or description.

Eq. (1) represents a concise and general optimization
model [Jiang et al., 2015a]. It combines the prior knowledge
extracted from the noisy webly-labeled data (as the curricu-
lum region) and the information dynamically learned during
the training (via the self-paced regularizer). Intuitively, the
prior knowledge serves as an instructor providing a guidance
on learning the latent weights, but it leaves certain freedom
for the model (the student) to adjust the actual weights ac-
cording to its learning pace. Experimental results in Section 4

demonstrate the learning paradigm can better overcome the
noisy labels than just using either predetermined prior knowl-
edge or dynamically learned information.

Algorithm 1: Webly-labeled Learning (WELL).
input : Input dataset D, curriculum region Ψ,

self-paced function f and a step size µ
output: Model parameter w

1 Initialize v∗, λ in the curriculum region;
2 while not converged do
3 Update w∗ = arg minw E(w,v∗;λ,Ψ);
4 Update v∗ = arg minv E(w∗,v;λ,Ψ);
5 if λ is small then increase λ by the step size µ;
6 end
7 return w∗

Following [Kumar et al., 2010; Jiang et al., 2015a], we em-
ploy the alternative convex search algorithm to solve Eq. (1).
Algorithm 1 takes the input of a curriculum region, an in-
stantiated self-paced regulizer and a step size parameter; it
outputs an optimal model parameter w. First of all, it initial-
izes the latent weight variables in the feasible region. Then it
alternates between two steps until it finally converges: Step 4
learns the optimal model parameter with the fixed and most
recent v∗; Step 5 learns the optimal weight variables with the
fixed w∗. In the beginning, the model “age” is gradually in-
creased so that more noisy samples will be gradually incorpo-
rated in the training. Step 4 can be conveniently implemented
by existing off-the-shelf supervised learning methods such as
the back propagation. Gradient-based methods can be used to
solve the convex optimization problem in Step 5. According
to [Gorski et al., 2007], the alternative search in Algorithm 1
converges as the objective function is monotonically decreas-
ing and is bounded from below.

At an early age when λ is small, Step 4 in Algorithm 1 has
an evident suppressing effect over noisy samples that have
greater loss to the already learned model. For example, with
a fixed w, the unconstrained close-formed solution for the
regularizer in Eq. (3) equals

v∗i =

{
− 1
λ`i + 1 `i < λ

0 `i ≥ λ
, (4)

where vi represents the ith element in the optimal solution
v∗ = [v∗1 , · · · , v∗n]T . Eq. (4) called linear regularizer indi-
cates the latent weight is proportional to the negative sample
loss, and the sample whose loss is greater or equals to λ will
have zero weights and thus will not affect the training of the
next model. As the model age grows, the hyper-parameter λ
increases, and more noisy samples will be used into training.
The prior knowledge embedded in the curriculum region Ψ is
useful as it suggests a learning sequence of samples for the
“immature” model. Section 3.2 theoretically indicates that
the iterative learning process is identical to optimizing a ro-
bust loss function on the noisy data.

If we keep increasing λ, the model will ultimately use ev-
ery sample in the noisy data, which is undesirable as the la-
bels of some noisy samples are bound to be incorrect. To
this end, , we stop increasing the age λ after about a certain



number of iterations (early stopping). The exact stopping it-
eration for each detector is automatically tuned in terms of its
performance on a small validation set.

Partial-order Curriculum
Ψ is a feasible region that embeds the prior knowledge ex-
tracted from the webly-labeled data. It physically corre-
sponds to a convex search region for the latent weight vari-
able. Given a set of training samples X = {xi}ni=1, Jiang
et al. proposed an implementation of the total-order cur-
riculum on training samples [Jiang et al., 2015a]. It is de-
fined as a ranking function: γ : {xi}ni=1 → {1, 2, · · · , n},
where γ(xi) < γ(xj) represents that the sample xi should
be learned earlier than xj in training. However, predetermin-
ing a total-order learning sequence for every pair of samples,
especially in the big noisy data, seems to be infeasible. In
reality, we can only obtain incomplete prior information from
the noisy data. For examples, we may know videos with cer-
tain keywords in its title should be learned earlier, but may
never know the learning priority for the videos that do not
have the keywords.

To this end, we propose a novel notion called partial-order
curriculum, which allows for leveraging the incomplete prior
information residing in the webly-labeled data. Define a par-
tial order relation � such that xi � xj indicates that the sam-
ple xi should be learned no later than xj (i, j ∈ [1, n]). Simi-
larly given two sample subsets Xa � Xb denotes the samples
in Xa should be learned no later than the samples in Xb.

Definition 1 (Partial-order Curriculum) Given the train-
ing samples X = {xi}ni=1 and their weight variables
v = [v1, · · · , vn]

T . Define a partial-order set γ = (X,�).
For every element in set Xp � Xq(Xp,Xq ⊆ X), a feasible
region Ψ = (ATv ≤ 0) is called a partial-order curriculum
region of γ if A = 0 except ∀xi ∈ Xp, ∀xj ∈ Xq we have
∃t, Ati = −1 and Atj = 1.

The partial-order curriculum in Definition 1 generalizes the
total-order curriculum by incorporating the incomplete prior
over groups of samples. Samples in the confident groups
should be learned earlier than samples in the less confident
groups. It imposes no prior over the samples within the same
group nor the samples not in any group. Definition 1 follows
the curriculum definition in [Jiang et al., 2015a] and will de-
generate to the curriculum in [Jiang et al., 2015a] when the
partial order becomes the full order relation.

In our problem, we extract the partial-order curriculum in
the following way: we only distinguish the training order for
groups of samples. We directly utilize the textual descriptions
of the videos generated by the uploaders. For each video,
we extract the latent topics of the video based on their titles,
descriptions and tags in their metadata. In terms of the dis-
tance between the video’s latent topic to the target concept,
we group videos in a sequential order for each concept. The
grouping and ordering information of the videos can be used
to construct the partial-order curriculum. In our experiment,
we divide the data into two partial-order curriculum groups,
where the videos with matching scores larger than zero are in
one group and the rest are in the other group.

Dropout
The labels in webly-labeled data are much noisier than
manually-labeled data, and as a result, we found that the
learning is prone to overfitting the noisy labels. To address
this issue, inspired by the dropout technique in deep learn-
ing [Srivastava et al., 2014], we propose a dropout strategy
for webly-labeled learning. It is implemented in the self-
paced regularizer discussed in Section 3.1. With the dropout,
the regularizers become:

ri(p) ∼ Bernoulli(p) + ε, (0 < ε� 1)

fb(v;λ, p) = −λ‖r · v‖1,

fl(v;λ, p) =
1

2
λ

n∑
i=1

(
1

ri
v2i − 2vi),

(5)

where r is a column vector of independent Bernoulli random
variables with the probability p of being 1. Each of the ele-
ment equals the addition of ri and a small positive constant
ε. Denote Ew =

∑n
i=1 vi`i + f(v;λ) as the objective with

the fixed model parameters w without any constraint, and the
optimal solution v∗ = [v∗1 , · · · , v∗n]T = arg minv∈[0,1]n Ew.
We have:

Ew =

n∑
i=1

(`i − riλ)vi;⇒ v∗i =

{
1 `i < riλ

0 `i ≥ riλ
, (6)

Ew =

n∑
i=1

`ivi + λ(
1

2ri
v2i − vi);

∂Ew

∂vi
= `i + λvi/ri − λ = 0;

⇒ v∗i =

{
ri(− 1

λ`i + 1) `i < λ

0 `i ≥ λ
.

(7)

The dropout effect can be demonstrated in the closed-form
solutions in Eq. (6) and Eq. (7): with the probability 1−p, v∗i
in both the equations approaches 0; with the probability p, v∗i
approaches the solution of the plain regularizer discussed in
Eq. (2) and Eq. (3). Recall the self-paced regularizer defines
a scheme for learning samples. Eq. (6) and Eq. (7) represent
the new dropout learning scheme.

When the base learner is neural networks, the proposed
dropout can be used combined with the classical dropout
in [Srivastava et al., 2014]. The term dropout in this paper
refers to dropping out samples in the iterative learning. By
dropping out a sample, we drop out its update to the model pa-
rameter, which resembles the classical dropout used in neural
networks. It operates on a more coarse-level which is useful
for noisy data. When samples with incorrect noisy labels up-
date a model, it will encourage the model to select more noisy
labels. The dropout strategy prevents overfitting to noisy la-
bels. It provides a way of combining many different sample
subsets in different iterations in order to help avoid bad local
minima. Experimental results substantiate this argument. In
practice, we recommend setting two Bernoulli parameters for
positive and negative samples on imbalanced data. Empiri-
cally, we apply a much smaller probability p on the negative
samples than on the positive samples.
3.2 Theoretical Discussions
Interestingly, it turns out that Algorithm 1 actually optimizes
an underlying non-convex robust loss on the noisy data. To



show this, let v∗(λ, `) represent the optimal weight of v for a
loss term ` imposed on a training sample in Eq (1), where

v∗(λ, `) = argminv∈[0,1] v`+ f(v, λ). (8)

For convenience of notation, let the curriculum region be
the full space. According to [Meng and Zhao, 2015], the la-
tent objective has the form of E` =

∑n
i=1 Fλ(`i)(λ > 0)

with a latent loss function Fλ(`) obtained by integrating the
loss variable from v∗(λ, `), i.e.,

Fλ(`) =

∫ `

0

v∗(λ; l)dl. (9)

Note that in the above ` and l means loss variables in the
latent loss function Fλ(`) and the optimal weight function
v∗(λ, l), whereas `i denotes the loss value actually calculated
on the i-th sample. Incorporate the binary and linear self-
paced regularizers in Eq. (9), the latent objective becomes:

F bλ(`) = min(`, λ) (10)

F lλ(`) = I(` ≥ λ)
λ

2
+ I(` < λ)(`− `2

2λ
) (11)

Eq. (10) and Eq. (11) are two common non-convex regu-
larized penalties in the machine learning community, where
Eq. (10) is the Capped-Norm based Penalty(CNP) [Zhang,
2010b; Gong et al., 2013] and Eq. (11) is the Minimax Con-
vex Plus (MCP) [Zhang, 2010a]. It has been showed that
both CNP and MCP can be used as robust loss functions that
threshold the samples of greater loss [Friedman et al., 2007].
Therefore, Algorithm 1 actually minimizes a non-convex ro-
bust loss derived from the original loss in the base learner
(e.g. hinge loss). On clean data, the effect of the robust loss
may not be evident, but on noisy data, without the robust loss,
the model can be easily dominated by a few noisy samples
or outliers. Experimental results substantiate this argument,
where we observed that the robust loss leads to more accurate
results than the original loss on the webly-labeled data.

Based on this understanding, the proposed WELL can
be theoretically justified from two independent perspectives.
From the learning perspective, WELL mimics the human
and animal learning process that learns a model gradually
from confident to less confident examples in the noisy data.
From the optimization perspective, on the other hand, it min-
imizes a non-convex robust loss (CNP or MCP) on the noisy
data. The robust loss tends to depress samples with noisy la-
bels or outliers. Due to the nature of non-convexity, WELL
utilizes the curriculum and self-paced learning, which have
been demonstrated to be instrumental in avoiding bad lo-
cal minima in non-convex problems [Bengio et al., 2009;
Kumar et al., 2010]. Interestingly, Meng and Zhao proved
that when λ is fixed, Algorithm 1, in fact, is identical to the
Majorization-Minimization algorithm [Mairal, 2013], a pop-
ular solver for non-convex problems [Meng and Zhao, 2015].
Based on the understanding, one can justify the role of the
curriculum region, i.e. the curriculum confines the search
space of a non-convex problem to some reasonable subspace
which tends to improve the quality of the starting value and
the final solution. The dropout methods on the other hand,
prevent overfitting in the non-convex optimization problem.

4 Experiments
4.1 Experimental Setup
This section systematically verifies the accuracy and the
scalability of the proposed method on learning concept de-
tectors from noisy webly labeled video data. The experi-
ments are conducted on two public benchmarks: FCVID and
YFCC100M, where FCVID is by far one of the biggest man-
ually annotated video set, and the YFCC100M dataset is the
largest multimedia benchmark.

Dataset and Feature Fudan-columbia Video Dataset
(FCVID) contains 91,223 YouTube videos (4,232 hours)
from 239 categories. It covers a wide range of concepts like
activities, objects, scenes, sports, etc. [Jiang et al., 2015d].
Each video is manually labeled to one or more categories. In
our experiments, we do not use the manual labels in train-
ing, but instead we automatically generate the web labels ac-
cording to the concept name appearance in the video meta-
data. The manual labels are used only in testing to evaluate
our and baseline methods. Following [Jiang et al., 2015d],
the standard train/test split and the same static CNN feature
from [Jiang et al., 2015d] are used to have a fair comparison
to existing methods. The second set YFCC100M [Thomee et
al., 2015] contains about 800,000 videos on Flickr with meta-
data such as the title, tags, the uploader, etc. There are no
manual labels on this set and we automatically generate the
web labels from the metadata. We use the features provided
in [Jiang et al., 2015c] where we first extract the keyframe
level the VGG neural network features [Chatfield et al., 2014]
and create a video feature by average pooling. The same fea-
tures are used across different methods on each dataset. Since
there are no annotations, we train the concept detectors on the
most 101 frequent latent topics in the video metadata.

Baselines The proposed method is compared against the
following five baseline methods which cover both the clas-
sical and the recent representative learning algorithms on
webly-labeled data. BatchTrain trains a single SVM model
using all samples with noisy labels. AdaBoost is a classi-
cal ensemble approach that combines the sequentially trained
base classifiers in a weighted fashion [Friedman, 2002]. Self-
Paced Learning (SPL) is a classical method where the cur-
riculum is generated by the learner itself [Kumar et al., 2010].
BabyLearning is a recent method that simulates baby learn-
ing by starting with few training samples and fine-tuning us-
ing more weakly labeled videos crawled from the search en-
gine [Liang et al., 2015]. We build a search engine that in-
dexes the textual metadata and retrieves videos using concept
words based on Lucene [Białecki et al., 2012]. GoogleHNM
We use the hard negative mining strategy in [Varadarajan et
al., 2015]. On FCVID, we use the YouTube topic API to ac-
quire the noisy label whereas on YFCC100M we obtain the
noisy label by the Lucene search engine.

Evaluation Metrics On FCVID, as the manual labels are
available, the performance is evaluated in terms of the pre-
cision of the top 5 and 10 ranked videos (P@5 and P@10)
and mean Average Precision (mAP) of 239 concepts. On
YFCC100M, since there are no manual labels, for evalua-
tion, we apply the detectors to a third public video collec-
tion called TRECVID MED which includes 32,000 Internet



videos [Over et al., 2014]. We apply the detectors trained on
YFCC100M to the TRECVID videos and manually annotate
the top 10 detected videos of each method for 101 concepts.

Our Model We build our method on top of a pre-
trained convolutional neural network as the low-level fea-
tures, i.e. static CNN features on FCVID and VGG features
on YFCC100M. The concept detectors are trained based on
a hinge loss cost function. Algorithm 1 is used to train the
concept models iteratively and the λ stops increasing after
100 iterations. We automatically generate noisy web labels
based on the video metadata. For the videos with noisy pos-
itive labels, we group them based on their latent topics, and
derive a partial-order curriculum in Definition 1. The hyper-
parameters of all methods including the baseline methods are
tuned on the same validation set. On FCVID, the set is a small
training subset with manual labels whereas on YFCC100M it
is a proportion of noisy training set.

4.2 Experiments on FCVID
Table 1 compares the precision and mAP of different meth-
ods where the best results are highlighted. As we see, the
proposed WELL with dropout significantly outperforms all
baseline methods, with a significant difference at p-level of
0.05. For example, WELL outperforms the best baseline on
194 out of 239 concepts. The promising experimental results
substantiate our theoretical analysis in Section 3.2. With the
proposed model, the binary and linear regularizer yield a sim-
ilar accuracy on this dataset. The performance difference be-
tween WELL with and without dropout demonstrates the ef-
ficacy of the proposed dropout technique, and the difference
between SPL and WELL indicates the benefit of incorporat-
ing the proposed partial-order curriculum.

Note, WELL does not use any manual labels in training,
but interestingly, its accuracy is comparable with the model
trained on 35,850 videos with ground truth labels in [Jiang
et al., 2015d]. To investigate the potential of training con-
cepts on webly-labeled video data, we apply WELL on the
data subsets of different sizes. Specifically, we randomly split
the FCVID training set into the subset of 200, 500, 1,000,
and 2,000 hours of videos, and train the models on each sub-
set. The models are then tested on the same standard test
set. Table 2 lists the results. As we see, the accuracy of
WELL on webly-labeled data increases along with the growth
of the size of noisy data. The accuracy of WELL on 2,000
hours of videos with noisy web labels turns out to be better
than the model trained on 500 hour of manually labeled data.
Recall FCVID is one of the biggest manually annotated set
which contains about 2,000 hours of annotated videos. Ac-
cording to the results, we hypothesize that with more webly-
labeled data, which is not hard to obtain, WELL can poten-
tially outperform models trained on any existing manually-
labeled data.
4.3 Experiments on YFCC100M
Since there are no manual labels on YFCC100M, to evaluate
the performance, we manually annotate the top 10 videos in
the test set and report their precisions in Table 3. A similar
pattern can be observed where the comparisons substantiate
the rationality of the proposed partial-order curriculum and
the dropout technique. The promising results on the largest

Table 1: Performance comparison on FCVID.

Method P@5 P@10 mAP

BatchTrain 0.782 0.763 0.469
Adaboost [Friedman, 2002] 0.456 0.412 0.293
SPL [Kumar et al., 2011] 0.793 0.754 0.414
GoogleHNM [Varadarajan et al., 2015] 0.781 0.757 0.472
BabyLearning [Liang et al., 2015] 0.834 0.817 0.496
WELL (binary w/o dropout) 0.857 0.843 0.521
WELL (linear) 0.893 0.877 0.566
WELL (binary) 0.893 0.878 0.567

Table 2: MAP comparison of models trained using web la-
bels and ground-truth labels on different subsets of FCVID.

Dataset Size 200h 500h 1000h 2000h
WELL (noisy web label) 0.413 0.480 0.520 0.567
BatchTrain (ground-truth label) 0.485 0.561 0.604 0.638

multimedia set YFCC100M verify the scalability of the pro-
posed method.

Table 3: Performance comparison on YFCC100M.
Method P@3 P@5 P@10

BatchTrain 0.535 0.513 0.487
Adaboost [Friedman, 2002] 0.341 0.327 0.282
SPL [Kumar et al., 2011] 0.485 0.463 0.454
GoogleHNM [Varadarajan et al., 2015] 0.541 0.525 0.500
BabyLearning [Liang et al., 2015] 0.548 0.519 0.466
WELL (binary w/o dropout) 0.607 0.608 0.589
WELL (linear) 0.667 0.663 0.649
WELL (binary) 0.660 0.640 0.625

5 Conclusions
In this paper, we proposed a novel method called WELL
for webly labeled video data learning. WELL extracts in-
formative knowledge from noisy weakly labeled video data
from the web through a general framework with solid the-
oretical justifications. It further improves curriculum and
self-paced learning theory with the partial-order curriculum
and dropout to build better video detectors with noisy data.
WELL achieves the best performance only using webly-
labeled data on two major video datasets. The result suggests
that with more webly-labeled data, which is not hard to ob-
tain, WELL can potentially outperform models trained on any
existing manually-labeled data.
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